



Galactose and Maltose Analyzed with ELSD – AppNote

Retention and Separation of Mono and Disaccharides

This Method demonstrates the ability to retain two highly polar test solutes. Maltose, for example, has a log P of -4.7 and would be difficult to retain in Reversed Phase. Great separation is observed for these Mono and Disaccharides.

1

2

Peaks:

1. D-Galactose
2. Maltose

Method Conditions

Column: Cogent Amide™, 4µm, 100Å

Catalog No.: [40036-10P](#)

Dimensions: 4.6 x 100mm

Mobile Phase: 85% Acetonitrile 15% DI Water / 0.1% Triethylamine (TEA) (v/v)

Flow rate: 1.0 mL/minute

Detection: ELSD (Evaporative Light Scattering Detector) Gain: 10; Temperature: 65°C;

Injection vol.: 1µL

Sample Preparation: Reference standards (1 mg/mL) in diluent of 50% Acetonitrile / 50% DI Water (v/v)

t₀: 1.50 Minutes

K₁: 1.33

Note: Galactose is a monosaccharide and Maltose is a disaccharide. Maltose is the disaccharide produced when amylase breaks down starch.

Note: Capacity Factor - Relative Retention $k = (tR-t0)/t0$

Printed from the Chrom Resource Center

Copyright 2025, All Rights Apply

MicroSolv Technology Corporation

9158 Industrial Blvd. NE, Leland, NC 28451

Tel: (732) 380-8900

Fax: (910) 769-9435

Email: customers@mtc-usa.com

Website: www.mtc-usa.com