

## Advantages and Disadvantages of Acid Washing Autosampler Vials - HPLC Primer

*Date: 19-JUNE-2018 Last Updated: 27-OCTOBER-2025*

### **Acid-Washing Autosampler Vials: When It Helps, When It Hurts—and Why RSA™ Vials Don't Need It**

Acid washing is sometimes used to “deactivate” standard borosilicate autosampler vials by stripping reactive surface silanols (Si–OH). While this can reduce surface activity in ordinary glass, it also introduces non-trivial risks—and it is unnecessary for RSA™ (Reduced Surface Activity) vials, which are manufactured to minimize surface activity from the start.

#### **1) What labs intend to fix with acid washing**

- **Goal:** reduce adsorption of basic and other surface-sensitive analytes by removing or passivating native silanol sites on standard Type I borosilicate glass. In conventional vials, these sites can bind analytes and erode recovery/linearity—especially at low concentrations.

RSA™ exception: RSA™ vials are produced with a proprietary process that greatly suppresses silanol-driven surface activity, so no acid treatment is required to achieve low-adsorption performance. They are effectively “LC-MS ready” out of the box.

#### **2) Why acid washing standard vials can backfire**

Even when carefully performed, acid washing can create new problems:

- Ionic residue risk: chloride, sodium, and other trace ions can remain from reagents or containers and later appear in blanks or samples.
- Variability: manual cleaning introduces vial-to-vial inconsistency—some vials end up more “active” than others, impairing reproducibility. Operational burden: added reagents, rinsing, drying, and contamination control increase cost and time, and re-contamination can occur during handling

Bottom line: for high-sensitivity HPLC/LC-MS work, acid-cleaned conventional vials can still contribute ghost peaks/background or inconsistent adsorption, whereas RSA™ vials avoid the added processing step and its risks.

#### **3) Practical guidance for technical users**

Use RSA™ vials when:

- Working with basic/cationic analytes, peptides, amines, or other adsorption-prone compounds.
- Running LC-MS, HILIC, ANP, or trace-level assays where background and reproducibility are critical.
- You need consistent, low-activity surfaces without post-processing.

If you must clean standard vials:

- Validate the cleaning protocol (reagent grades, rinse sequence, dry conditions).
- Verify by blank injections and replicate tests that ionic residues and adsorption have been acceptably reduced.
- Document lot-level differences; expect residual variability.

#### 4) Key takeaways

- Acid washing is not recommended for RSA™ vials—they are engineered to have minimal surface activity and do not require acid treatment.
- Acid washing standard vials can introduce chloride/sodium and other trace contaminants , add variability, and consume resources.
- For high-sensitivity or regulated workflows , choose vial technologies that avoid post-processing and minimize extractables/adsorption from the start.

Click [HERE](#) for RSA Vials ordering information.



Printed from the Chrom Resource Center

Copyright 2025, All Rights Apply

**MicroSolv Technology Corporation**

9158 Industrial Blvd. NE, Leland, NC 28451

Tel: (732) 380-8900

Fax: (910) 769-9435

Email: [customers@mtc-usa.com](mailto:customers@mtc-usa.com)

Website: [www.mtc-usa.com](http://www.mtc-usa.com)